Table of Contents

1. INTRODUCTION... 1
 1.1. Proposed Project Description ... 1
 1.2. Background .. 1
 1.3. Purpose .. 2
 1.4. Acknowledgements ... 2
2. PROJECT WATER DEMAND ... 2
 2.1. Existing Water Use ... 2
 2.2. Estimated Future Water Demand ... 3
 2.3. Estimated Future Recycled Water Use ... 4
 2.4. Future Water Conservation ... 4
 2.5. Total Future Project Demand .. 4
3. CITY OF TORRANCE WATER DEMAND .. 4
 3.1. Climate ... 5
 3.2. Population .. 5
 3.3. Current Water Use Sectors and Water Demand ... 5
 3.4. Projected Water Demand .. 6
 3.5. Water Demand in Normal and Drought Periods ... 6
4. CITY OF TORRANCE WATER SUPPLY .. 7
 4.1. Imported Water ... 7
 4.2. Groundwater ... 8
 4.3. Goldsworthy Desalter ... 9
 4.4. Recycled Water .. 9
 4.5. Water Supply in Normal and Drought Periods ... 10
5. COMPARISON OF SUPPLY AND DEMAND .. 10
6. REFERENCES ... 10
List of Tables

Table 1. Historical Water Use (AF), South Bay Galleria
Table 2. Estimation of Future Water Demand, South Bay Galleria
Table 3. Climate Data
Table 4. Population Projections
Table 5. Historical Water Demand by Water Use Sectors (AFY)
Table 6. Projected Water Demand by Water Use Sectors (AFY)
Table 7. Historical Water Supply Sources (AFY)
Table 8. Normal Year Supply and Demand Comparison (AFY)
Table 9. Single Dry Year Supply and Demand Comparison (AFY)
Table 10. Multiple Dry Year Supply and Demand Comparison (AFY)

List of Figures

Figure 1. Project Area
Figure 2. Baseline Site Plan
Figure 3. Proposed Project – Scheme A
Figure 4. Proposed Project – Scheme B
Figure 5. Proposed Project – Scheme C
Figure 6: Proposed Project - Scheme D
1. **INTRODUCTION**

1.1. **PROPOSED PROJECT DESCRIPTION**

The South Bay Galleria Improvement Project involves expansion of the approximately 30-acre South Bay Galleria enclosed mall property located at 1815 Hawthorne Boulevard in the City of Redondo Beach, California. The project proposes almost 1,500,000 square feet of new space including residential units and approximately 830,000 square feet of new retail, restaurant, and hotel space. This represents up to 650 new residential units, an increase in retail and restaurant space of up to 220,000 square feet, and a new hotel with up to 150 rooms. The existing movie theater will remain in place.

There are four proposed options, Scheme A (the proposed project), Scheme B (Alternative 2), Scheme C (Alternative 3), and Scheme D (Alternative 4) which have different amounts of retail and restaurant square footage, residential units, and hotel rooms. This WSA considers each of these four options.

Figure 1 shows the project area with reference to the city limits and major roads. *Figure 2* shows the existing site layout. *Figures 3, 4, 5, and 6* show the proposed site plans for Schemes A, B, C, and D respectively.

1.2. **BACKGROUND**

The California Water Code section 10910 (also termed Senate Bill 610 or SB610) requires that a water supply assessment (WSA) be provided to cities and counties for projects (of a specified type and size) that are subject to the California Environmental Quality Act (CEQA). The City recognizes the South Bay Galleria Improvement Project as subject to CEQA and SB610. Cities and counties are mandated to identify the public water system that might provide the project’s water supply and then to request a WSA, which includes a discussion with regard to whether the public water system’s total projected water supplies (available in normal, single dry, and multiple dry years during a 20-year projection) will meet the projected water demand associated with the proposed project in addition to the public water system’s existing and planned future uses. The City of Torrance is the public water provider for the South Bay Galleria property. Therefore, water supply and demand information for the City of Torrance will be presented herein.

A foundational document for preparation of the WSA is the Urban Water Management Plan (UWMP). The City of Torrance prepared a 2015 Urban Water Management Plan, incorporated herein by reference, which was adopted on July 19, 2016, and is available online at: http://www.torranceca.gov/PDF/UWMPTorrance2015Final2016-07-27.pdf. WSAs and UWMPs both require water supply reliability information to be provided for the water service area in five-year increments over a 20 year planning horizon. Recognizing the role of
the UWMP in future WSAs, the City of Torrance prepared its UWMP with water supply reliability information over a 25-year horizon.

The 2015 UWMP estimates that the existing water service area population is approximately 105,400 persons, based upon the California Department of Water Resources (DWR) Population Tool, and is estimated to increase to 120,812 by the year 2040 (SA Associates, 2016). The project is expected to add a maximum of 1,008 new residents. The 2015 UWMP concludes that if projected imported and local supplies are developed as anticipated, no water shortages are anticipated in the City’s service area during the planning period (SA Associates, 2016). Furthermore, these calculations assumed per capita consumption of 142 gallons per capita per day (GPCD), despite the fact that the service area population achieved an average consumption of 127 GPCD over the last five years (SA Associates, 2016). The 2015 UWMP provides a more detailed discussion of water sources and supplies, water quality, reliability planning, conservation measures, contingency planning, and water recycling.

1.3. PURPOSE

The purpose of this WSA is to document the City of Torrance’s existing and future water supplies for its service area and compare them to the area’s future water demand including that of the proposed project. This comparison, conducted for both normal and drought conditions, is the basis for an assessment of water supply sufficiency in accordance with the requirements of California Water Code section 10910 (Senate Bill 610).

1.4. ACKNOWLEDGEMENTS

This assessment was prepared by Liz Elliott, Senior Hydrogeologist, and Iris Priestaf, President, for Forest City West, the project developer. Ms. Elliott and Dr. Priestaf have completed numerous WSAs for clients throughout California. We appreciate the valuable assistance provided by Kenneth Lee, Forest City West, Amanda Glover, South Bay Galleria, TAIT & Associates, Inc., ESA, Gensler, the City of Redondo Beach, and the City of Torrance.

2. PROJECT WATER DEMAND

This section addresses water demands for the existing project area and for the proposed land use.

2.1. EXISTING WATER USE

The South Bay Galleria is currently composed of retail, restaurants, a movie theater, and parking lots. Water is supplied by the City of Torrance. Table 1 summarizes historical water use for 2005 through 2015 based on metered water usage provided by South Bay Galleria and the City of Torrance. South Bay Galleria provided metered water usage data for the entire property, minus the department stores (Kohl’s, Macy’s, and Nordstrom) and the irrigation meters.
The City of Torrance provided metered water usage data for the department stores and the irrigation meters. There were some gaps in the metered data for the department stores which were filled based on: 1) review of available data, 2) average of available data, and/or 3) comparison of store size and use. Metered water usage was provided for two of the three landscape irrigation meters. Since the water usage for the two irrigation meters were relatively similar, it was assumed that the water usage for the third irrigation meter was the average of the first two.

The historical water use ranged from 63 AFY in 2015 to 85 AFY in 2006. Recycled water is not used on the property.

2.2. Estimated Future Water Demand

Estimation of the future water demand for the four proposed Project options involves application of water demand factors. The City of Torrance’s UWMP does not include a methodology for how future demand is estimated. Accordingly, estimation of project demand for this WSA was based on water demand factors from the City of Redondo Beach Waterfront Project Water Supply Assessment (Yarne & Associates, Inc., 2015) and from information on per capita water use from the City of Torrance 2015 UWMP.

Water demand factors were have been developed on other projects for various land uses, including retail, restaurant, hotel, and theater based on water use data for a development project in Cal Water’s Dominguez system in Torrance and other Cal Water data (Yarne & Associates, Inc., 2015). The retail water demand factor is 0.164 gallons per day per square foot (gpd/sf), the restaurant water demand factor is 1.1 gpd/sf, the hotel water demand factor is 0.5 gpd/sf, and the theater water demand factor is 0.55 gpd/sf (Yarne & Associates, Inc., 2015). The residential water demand is based on the City of Torrance’s target for per capita water consumption of 142 GPCD (SA Associates, 2016) despite the fact that the service area population achieved an average consumption of 127 GPCD over the last five years (SA Associates, 2016). Landscaping water use was is based on an irrigation water use estimate of 2.5 AFY per acre (0.05 gpd/sf) from the City of Redondo Beach WSA, based on data from Cal Water’s Dominguez system in Torrance (Yarne & Associates, Inc., 2015). Based on our professional experience, these water demand factors are reasonable. The landscaped area for the Baseline (Figure 2) and four Project alternatives was visually estimated from the site plans provided by Gensler, the project architect (Figures 3, 4, 5, and 6). Future green space will include synthetic turf, trees, and drought tolerant plants. However, for purposes of this analysis, it is assumed that all of the future landscaped area is irrigated. This is a conservative approach.

Based on these water demand factors, calculations of potable water demand for the four Project options are shown on Table 2. The future potable water demands for the proposed Project alternatives are estimated to be 530537, 450457, 382387, and 442448 AFY for Scheme A, B, C and D, respectively. Therefore, for purposes of this analysis, the water demand associated with Scheme A, the proposed project, (530537 AFY) is conservatively assumed.
2.3. **Estimated Future Recycled Water Use**

Recycled water is not used at the South Bay Galleria property, but may be a future water source if the project gains access to the recycled water supply.

2.4. **Future Water Conservation**

The Water Conservation Act of 2009 (SBx7-7) calls for a 20 percent reduction in urban water use by the year 2020. The water code was amended to require 2015 and 2020 water use targets to be developed in the 2010 UWMPs with updated targets in the 2015 UWMPs (SA Associates, 2016). According to the 2015 UWMP, the City of Torrance set a 2020 compliance target for per capita water consumption of 142 GPCD in accordance with Section (10608.20) (b)(3) of the Water Code (SA Associates, 2016). Based on per capita water use from 2010 to 2015, the City of Torrance has already achieved this compliance target (SA Associates, 2016). The City’s water efficiency has increased since 2010, which is partly due to conservation measures and awareness. Much of the water conservation is a result of Governor Jerry Brown’s 2015 executive order mandating a 25 percent reduction in urban potable water use in response to the ongoing drought. In May 2015, in response to the State’s executive order, the City of Torrance approved Level 2 water conservation measures which call for 20 percent reduction in water use. The Level 2 water conservation measures also limit outside watering to only 10 minutes, two days a week, between 6 pm and 8 am; require that leaks are fixed within four days; prohibit watering within 48 hours after a rain event; and place restrictions on filling and refilling of pools, spas, and ponds (City of Torrance, 2016). In accordance with the City of Torrance Water Conservation Ordinance 3717 enacted in March of 2009, water use restrictions apply to any entity using potable water provided by the City of Torrance (City of Torrance, 2009). Therefore, these conservation measures apply to the South Bay Galleria.

2.5. **Total Future Project Demand**

Table 2 shows the estimated future project demand for each alternative. As this project is redevelopment, the future demand is expected to replace historical demand. The net change in water demand at the site, due to Scheme A (the maximum water use scenario), is an additional 309,311 AFY of potable demand.

3. **City of Torrance Water Demand**

This section summarizes water demands for the City of Torrance’s service area. The City of Torrance is the focus of this section because it supplies water to South Bay Galleria. It is herein referred to as the City.

The first part describes the factors affecting total water demand, including climate, population and employment, plus the mix of customer types, such as residential,
commercial, agricultural and industrial. The second part documents water demands not only under normal climatic conditions, but also during drought.

3.1. Climate

Climate has a significant influence on water demand on a seasonal and annual basis. This influence increases with the portion of water demand for outside uses, specifically landscape irrigation.

Table 3 summarizes representative climate data for the City, including average monthly and annual rainfall and evapotranspiration (ETO). The City has a semi-arid, Mediterranean climate, characterized by dry summers and wet winters with year-round moderate-to-warm temperatures. Reflecting this pattern, water demand in the City is greater in the summer than in the winter.

Climate change may affect future water supply availability for the City of Torrance by reducing water availability, changing local precipitation patterns, and increasing water demands. As discussed in greater detail below, the City has developed a portfolio of different water supplies, including imported water from the Metropolitan Water District of Southern California, groundwater, desalinated groundwater, and recycled water.

California has been in the midst of a serious drought since 2012. In response, and as summarized in Section 2.4, the City called for a 20 percent reduction in urban potable water use in April 2015. Since June 2015, the City of Torrance achieved this conservation standard by reducing water use by 20.8 percent (SWRCB, 2016).

3.2. Population

City population, a key factor in water demand, is analyzed in the 2015 UWMP. Table 4 reproduces the UWMP population value for the City’s water service area for 2015 with projections to 2040.

3.3. Current Water Use Sectors and Water Demand

Table 5 documents the historical water demand for the City’s service area by water use sectors for calendar years 2010 through 2015 (SA Associates, 2016). The water use sectors (customer types) are listed on the left. During this six year period, total water use declined slightly, reflecting the success of water conservation programs among other factors. Unaccounted water, which includes routine pipeline flushing, unmetered use, water losses and inaccurate meter registration, ranged from 67 to 1,160 AFY (SA Associates, 2016). Table 5 also shows the average water demands; these can be considered as a representative baseline water demands that account for variability in weather and economic conditions. Average unaccounted for water during this time was less than three percent, which is well below state and national average (SA Associates, 2016).
3.4. **PROJECTED WATER DEMAND**

Table 6 summarizes projected water demands for the City’s service area from 2020 to 2040 (SA Associates, 2016). Overall, the projections indicate slightly increasing water demands to 2040 for each water use sector, except wholesale and industrial recycled, which do not change. The projected water use is based on a consumption rate of 142 GPCD in accordance with the Water Conservation Act of 2009 (SBx7-7).

Table 6 also shows the increase in water demand from 2020 to 2040. The 2015 UWMP assumes an 11.6 percent increase in residential, commercial/institutional, industrial, and landscape irrigation water demand between 2020 and 2040 (SA Associates, 2016). As indicated, residential water use is expected to increase 723 AFY for single family units and 401 AFY for multi-family units, and commercial demand is projected to increase by 367 AFY (SA Associates, 2016). The projected residential and commercial water demands reflect water demand increases associated with general commercial and residential growth in the City, and have not been allocated to specific development projects.

3.5. **WATER DEMAND IN NORMAL AND DROUGHT PERIODS**

The Los Angeles region has experienced major droughts over the last few decades and is currently experiencing a severe drought. Water conservation is important to Southern California’s water sustainability. As summarized in Section 2.4, the Water Conservation Act of 2009 calls for a 20 percent reduction in urban water use by the year 2020. In May 2015, the City of Torrance approved Level 2 water conservation measures which call for up to a 30 percent reduction in potable water use (SA Associates, 2016).

In addition to the Level 2 water conservation measures, the City of Torrance has committed to the 1991 Memorandum of Understanding (MOU) drafted by the California Urban Water Conservation Council for urban water conservation (SA Associates, 2016). The MOU established 14 Best Management Practices for water conservation which coincide with the 14 Demand Management Measures (DMMs) defined in the Urban Water Management Plan Act (SA Associates, 2016). The Department of Water Resources refined the list of DMMs to be reported in the 2015 UWMPs, as follows:

- DMM 1: Water Waste Prohibition Ordinances
- DMM 2: Metering
- DMM3: Conservation Pricing
- DMM 4: Public Education and Outreach
- DMM 5: Programs to Assess and Manage Distribution System Real Loss
- DMM 6: Water Conservation Program Conservation Program Coordination and Staffing Support
- DMM 7: Other Demand Management Measures that have a significant impact on water use as measured in gallons per capita per day (GPCD), including innovative measures.
4. CITY OF TORRANCE WATER SUPPLY

Water is supplied to the City of Torrance primarily as imported water from the Metropolitan Water District of Southern California (MWD). The City has one active well (Well #9) and one backup well (Well #7) for groundwater extraction. The Goldsworthy Desalter facility has been operating since 2001 and supplies the City with treated brackish groundwater from a saline plume. Recycled water is provided to the City from West Basin Municipal Water District for non-potable industrial and landscape irrigation use. However, South Bay Galleria does not have access to recycled water.

Table 7 lists the historical water supply sources from 2010 to 2015. Based on the six year average presented on Table 7, imported water from MWD contributes 64 percent of the total water supply for Torrance. Recycled water from West Basin Municipal Water District contributes 24 percent of the total supply, groundwater contributes 7 percent, and the Goldsworthy Desalter contributes 5 percent.

Table 8 shows the projected supply in Torrance in a normal year. The total water demand of the project is anticipated to be met with the current portfolio of supply discussed in the following section.

The South Bay Galleria Improvement Project will consider recycled water as a future water supply if the project gains access to the recycled water supply.

4.1. IMPORTED WATER

Imported water provided by MWD from the Colorado River and the Sacramento-San Joaquin River Delta (Delta) is purchased and delivered to the City. These two sources provide Southern California with approximately two million acre-feet (MAF) of water annually for urban uses. The Colorado River provides approximately 4.4 MAF annually for agricultural and urban uses while the Delta supplies Southern California with over 1 MAF annually. MWD receives its water supply via the Colorado River Aqueduct and the California Aqueduct. The Colorado River Aqueduct, managed by MWD, is 242 miles long and conveys water from the Colorado River to Lake Matthews. The California Aqueduct, part of the State Water Project and operated by the California Department of Water Resources, is 444 miles long and carries water from the Delta to Southern California (SA Associates, 2016).

MWD distributes imported water to its 26 members. Torrance, which is considered one of MWD’s 15 primary retail agencies, receives imported water from five interconnections ranging from 2,245 to 11,220 gallons per minute. These interconnections are capable of providing 100 percent of Torrance’s water. Based on the numbers shown on Table 7, from 2010 to 2015, imported water from MWD accounted for approximately 64 percent of the potable water supply in the City.
4.2. GROUNDWATER

As indicated in Table 7, groundwater has been a relatively small source of water supply for the City of Torrance. Groundwater is pumped from the Coastal Plain of Los Angeles County Groundwater Basin, West Coast Subbasin (Subbasin). The West Coast Subbasin is designated by the Department of Water Resources (DWR) as groundwater basin number 4-11.03 (DWR, 2003). The West Coast Subbasin underlies the City of Torrance and all or portions of 11 other cities in the area. Based on the 2015 UWMP, the City of Torrance has one active production well (Well #9) and one standby well (Well #7). As shown on Table 7, groundwater extraction ranged from 1,032 to 2,520 AFY between 2010 and 2015. The City has an adjudicated right to 5,640 AFY (SA Associates, 2016). Groundwater supply from 2010 to 2015 averaged approximately 1,761 AFY, significantly below their adjudicated right.

In 1961, the West Coast Subbasin was adjudicated to prevent overpumping, which has caused seawater intrusion, and restore groundwater levels. The Court appointed DWR to serve as Watermaster and account for water rights and groundwater extraction. WRD was created to manage, regulate, and replenish the Central and West Coast Basins.

With a surface area of 142 square miles, the Subbasin is bounded on the north by the Ballona Escarpment, on the east by the Newport-Inglewood fault zone, and on the south and west by the Pacific Ocean and consolidated rocks of the Palos Verdes Hills. In general, groundwater flows to the south and west from the Central Coastal Plain toward the Pacific Ocean. Since adjudication, groundwater levels have risen (DWR, 2003).

The water bearing deposits include the unconsolidated and semi-consolidated marine and alluvial sediments of Holocene, Pleistocene, and Pliocene ages. The Silverado aquifer, which underlies most of the West Coast Subbasin and reaches a maximum thickness of approximately 500 feet, is the most productive aquifer in the basin, yielding 80 to 90 percent of the groundwater extracted annually. The storage capacity for the Silverado aquifer is approximately 6.5 million AF (DWR, 2003).

DWR estimated groundwater use in the Subbasin at 43,920 AFY. Groundwater extraction by pumping wells is the primary means of groundwater discharge in the basin. Groundwater recharge in the basin primarily occurs as underflow from the Central Basin, to the east, through and over the Newport-Inglewood fault (DWR, 2003). Natural recharge also occurs from percolation of precipitation, and from the Los Angeles and San Gabriel Rivers (SA Associates, 2016).

Saltwater intrusion has degraded water quality in parts of the basin, including in the Silverado zone along the Santa Monica Bay and in the Gaspur zone in the San Pedro Bay (DWR, 2003). To combat this, two seawater intrusion projects were implemented in the West Coast Subbasin: the West Coast Basin Barrier Project and the Dominguez Gap Barrier Project (SA Associates, 2016). In 1953, the West Coast Basin Barrier Project, which extends approximately 9 miles from the Los Angeles airport to the Palos Verde Hills, through Torrance and Redondo Beach, began operating. Potable water and recycled municipal
wastewater is injected in over 150 wells to depths of up to 700 feet (WRD, 2007). The Dominguez Gap Barrier project began operation in 1969 and is located along the Dominguez Channel, south of Torrance and Redondo Beach. It extends for approximately 6 miles and includes 94 injection wells (WRD, 2007). The injected water from both of these projects creates a groundwater ridge which inhibits the inland flow of seawater into the Ssubbasin.

The Salt and Nutrient Management Plan (SNMP) for the Central Basin and West Coast Basin (Todd Groundwater, 2015) documents that average salt and nutrient concentrations in the West Coast Basin groundwater do not meet water quality objectives of the Regional Water Quality Control Board because of historical seawater intrusion. However, existing and planned implementation measures (including the barrier projects, desalters, recharge projects and other programs) ensure that salt and nutrient levels in groundwater will achieve the objectives in the future.

4.3. **Goldsworthy Desalter**

The Robert W. Goldsworthy Desalter is located in Torrance and began operating in 2001. The facility was designed to remove and treat brackish groundwater from a saline plume that was trapped inland of the West Coast Basin Barrier Project. The plant treats 1.5 million gallons per day (MGD) using microfiltration and reverse osmosis (SA Associates, 2016). The treated water is sold to the City of Torrance as potable water and supplements its imported and groundwater supply. As shown on Table 7, the City of Torrance has purchased an average of 1,304 AFY of water from the Goldsworthy Desalter between 2010 and 2015. The pumping and treatment helps to control the migration of the saline plume and reduce the City of Torrance’s reliance on MWD imported water. The desalter facility is in the process of being expanded to 5.0 MGD; the expanded facility is expected to be on-line by late 2017 (SA Associates, 2016).

4.4. **Recycled Water**

Although the South Bay Galleria property does not currently receive recycled water, the City of Torrance uses a significant amount of recycled water. As presented on Table 7, the City used an average of approximately 6,161 AFY between 2010 and 2015, accounting for approximately 24 percent of the water supply. The Torrance Refining Company (formerly Exxon Mobil) is responsible for most (approximately 95 percent) of the recycled water use in the City of Torrance.

The City of Torrance contracts with the West Basin Municipal Water District for the delivery of recycled water for non-potable and industrial uses (SA Associates, 2016). The recycled water is from the Edward C. Little Water Recycling Facility (ECLWRF), which receives secondary effluent from the Hyperion Wastewater Treatment Plant. The ECLWRF, located in El Segundo, is one of the largest water recycling facilities in the United States (SA Associates, 2016). In May 2013, an expansion project was completed that increased ECLWRF’s capacity from 30 to 40 million gallons of recycled water per day (SA Associates, 2016). The project expanded the Title 22 recycled water system, microfiltration (MF)
treatment system, reverse osmosis treatment system, and ultraviolet disinfection treatment systems (SA Associates, 2016).

4.5. **WATER SUPPLY IN NORMAL AND DROUGHT PERIODS**

The California Water Code requires a WSA to include discussion of how supply will meet demand during normal, single dry, and multiple dry years during a 20-year projection. The City’s 2015 UWMP provides discussion of water supply and demand in normal and drought periods, included herein by reference. Based on the City’s 2015 UWMP, **Table 8** summarizes water supply and demand for the City in a normal year, while **Tables 9 and 10** show supply and demand in single-year and multi-year dry conditions.

Review of **Tables 8, 9, and 10** shows that the water supply will remain the same in normal and drought periods (36,794 AFY). The City can expect to meet future demands for both single and multiple dry years through 2040 (SA Associates, 2016). Even so, future drought response would follow the water use efficiency mandates in the City’s Water Shortage Contingency Plan (SA Associates, 2016).

5. **COMPARISON OF SUPPLY AND DEMAND**

The City of Torrance 2015 Urban Water Management Plan (adopted July, 2016) was prepared recognizing commercial and residential expansion such as the proposed South Bay Galleria Improvement Project. The City forecasted an increase in water demand in both of these sectors. Under the proposed maximum development scenario (Scheme A), the Project would require a net increase in potable water demand of **399,311** AFY. For the City of Torrance, the overall planned increase in water demand is 2,171 AFY between 2020 and 2040 (**Table 6**). As documented in Tables 8, 9, and 10, the City of Torrance has sufficient water supply for existing water demands and projected water demands, including the demand of the proposed project, for normal, single dry, and multiple dry years during a 20-year projection.

6. **REFERENCES**

City of Torrance Water Conservation Website: http://www.torranceca.gov/18758.htm (accessed 4/20/16)

